• Категория: Приборостроение
  • Вид работы: Дипломная работа

РЕФЕРАТ Выпускная квалификационная работа бакалавра: 32c., 16 рисунков, 9 источников. Презентация: 11 слайдов Microsoft PowerPoint. ГЕНЕТИЧЕСКИЙ АЛГОРИТМ, ОПТИЧЕСКАЯ ЛОВУШКА, ДИФРАКЦИОННЫЕ ОПТИЧЕСКИЕ ЭЛЕМЕНТЫ. Объектом исследования является численная процедура расчета квантовых аксиальных дифракционных оптических элементов для решения задачи типа «световая бутылка». Цель работы – исследовать с помощью численной процедуры расчета квантовых ДОЭ зависимость энергетической эффективности дифракционных оптических элементов от числа уровней квантования. В ходе работы было разработано программное обеспечение, реализующее численную процедуру для расчета фазы дифракционного оптического элемента. Поставлены численные эксперименты расчета фазы квантованного дифракционного оптического элемента для задачи оптического захвата, с целью исследования зависимости эффективности дифракционного оптического элемента от числа энергетических уровней.

СОДЕРЖАНИЕ

ВВЕДЕНИЕ 6 СПИСОК ИСПОЛЬЗУЕМЫХ СОКРАЩЕНИЙ И ОБОЗНАЧЕНИЙ 7 1 Постановка задачи 8 2 Анализ методов оптимизации 10 3 Генетические алгоритмы 13 3.1 Основы генетического алгоритма 13 3.2 Селекция в генетическом алгоритме 15 3.2.1 Пропорциональная селекция. 16 3.2.2 Ранговая селекция 18 3.2.3 Турнирная селекция 19 3.2.4 Элитарная селекция 19 3.3 Скрещивание в генетическом алгоритме 19 3.4 Мутация в генетическом алгоритме 21 3.5 Фитнесс функция 22 4 Расчет фазы ДОЭ 23 5 Анализ численного эксперимента 24 ЗАКЛЮЧЕНИЕ 32 СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ 33

ВВЕДЕНИЕ

Оптической ловушкой типа «световая бутылка» (“light bottle”) называют такое распределение интенсивности лазерного излучения, в котором область нулевой интенсивности окружена световым барьером. Одно из применений «световых бутылок» – захват холодных атомов или молекул [6].

Помещение атома в область с высокой оптической интенсивностью приводит к его разрушению, поэтому в данной работе рассматривается захват в области с минимальной интенсивностью. Одним из способов формирования областей с минимальной интенсивностью является использование лазерных пучков с винтовой фазовой сингулярностью. Захват происходит в осевой темновой зоне пучка.

Такие ловушки имеют преимущество по сравнению с захватом в области высокой интенсивности поля, т.к. в этом случае минимизируются нежелательные эффекты, такие как нагрев при рассеянии фотонов и возмущения энергетических уровней световыми сдвигами.

Требования компактности и простоты использования стимулируют развитие методов для синтеза одного оптического элемента, обеспечивающего заданное 3D распределение интенсивности. С помощью численной процедуры, предложенной в работах [6,7], обеспечивается синтез фазовых дифракционных оптических элементов (ДОЭ), предназначенных для решения задачи оптического захвата.

Процедура, предложенная в работах [6,7],  основана на применении генетического алгоритма и обеспечивает эффективное формирование светового распределения в виде заданной 3D картины, полученной вращением одномерных распределений в нескольких плоскостях. Данный подход позволяет варьировать соотношение интенсивности светового барьера оптической ловушки в различных направлениях и управлять формой теневой области.

СПИСОК ИСПОЛЬЗУЕМЫХЫХ СОКРАЩЕНИЙ И ОБОЗНАЧЕНИЙ

ДОЭ – Дифракционный оптический элемент

ГА – Генетический алгоритм

СКО – Среднеквадратичное отклонение распределения интенсивности от среднего значения

IИнтенсивность

Е – Энергетическая эффективность ДОЭ

– Среднеквадратичное отклонение распределения интенсивности от среднего значения

ЗАКЛЮЧЕНИЕ

  1. Разработано программное обеспечение, реализующее предложенную в  [6,7] численную процедуру расчета квантованных дифракционных оптических элементов, для значений числа уровней квантования 2-8.
  2. Результаты численных экспериментов показали, что разработанное программное обеспечение позволяет рассчитывать ДОЭ с энергетической эффективностью свыше 70% (в случае восьмиуровневого ДОЭ) и погрешностью СКО не более 51%.
  3. Показано, что энергетическая эффективность дифракционного оптического элемента, предназначенного для формирования оптической ловушки типа “световая бутылка” и рассчитанного численной процедурой [6,7], зависит от числа уровней квантования. Была получена зависимость энергетической эффективности от числа уровней квантования дифракционного оптического элемента.

 

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

  1. Генетические алгоритмы. НейроПроект, 1999, http://www.neuroproject.ru/genealg.php
  2. Исаев С.А.. Популярно о генетических алгоритмах. URL: http://saisa.chat.ru/ga/ga-pop.html#top
  3. Сойфер В.А., Котляр В.В., Хонина С.Н. Физика элементарных частиц и атомного ядра. 2004 г.
  4. Сойфер В.А., Котляр В.В., Хонина С.Н. Дифракционная компьютерная оптика. М: 2007 г.
  5. Сойфер В.А., Котляр В.В., Хонина С.Н. Методы компьютерной оптики. М: 2007 г.
  6. Качалов Д.Г., Павельев В.С., Хонина С.Н., Скиданов Р.В., Порфирьев А.П. Компьютерная оптика, том 36, №1 Экспериментальная реализация холодного захвата. 2012 г.
  7. Качалов Д.Г., Павельев В.С., Хонина С.Н., Гамазков К.А. Компьютерная оптика, том 35, №1 Оптимизация бинарного ДОЭ для формирования «световой бутылки». 2011 г.
  8. В.И. Рейзлин. Учебное пособие «Численные методы оптимизации». Издательство Томского политехнического университета. Томск: 2011 г.
    1. Павельев В.С.. Стохастический подход к оптимизации квантованных дифракционных оптических элементов// Известия Самарского научного центра РАН, 2002. - Том 4, N 1- C. 61-67.


Свяжитесь с нами в один клик:

Нажмите на иконку и вы будете переправлены на страницу связи с нашими специалистами.